반복영역 건너뛰기
지역메뉴 바로가기
주메뉴 바로가기
본문 바로가기

연구정보

Remote Sensing and GIS as an Advance Space Technologies for Rare Vegetation Monitoring in Gobustan State National Park, Azerbaijan

아제르바이잔 국외연구자료 기타 Maral H. Zeynalova, Rustam B. Rustamov, Adil Y. Gambarov, Yelena M. Gambarova Journal of Geographic Information System 발간일 : 2016-11-29 등록일 : 2016-11-29 원문링크

자료이용안내

국내외 주요 기관에서 발표하는 자료들을 수집하여 제공하고 있습니다. 수록 자료의 자세한 내용은 해당 기관으로 문의하시기 바랍니다.

This paper describes remote sensing methodologies for monitoring rare vegetation with special emphasis on the Image Statistic Analysis for set of training samples and classification. At first 5 types of Rare Vegetation communities were defined and the Initial classification scheme was designed on that base. After preliminary Statistic Analysis for training samples, a modification algorithm of the classification scheme was defined: one led us to creating a 4 class’s scheme (Final classification scheme). The different methods analysis such as signature statistics, signature separability and scatter plots are used. According to the results, the average separability (Transformed Divergence) is 1951.14, minimum is 1732.44 and maximum is 2000 which shows an acceptable level of accuracy. Contingency Matrix computed on the results of the training on Final classi- fication scheme achieves better results, in terms of overall accuracy, than the training on Initial classification scheme.


본 페이지에 등재된 자료는 운영기관(KIEP)EMERiCs의 공식적인 입장을 대변하고 있지 않습니다.

목록